Selector circuit for power management in multiple battery systems

Abstract

A selector circuit configured to select among a DC power source and a plurality of batteries for an electronic device. The selector circuit includes a first comparator configured to compare a first input signal representative of a voltage level of the DC power source with a first threshold level and provide a first output signal representative of a difference between the first input signal and the first threshold level, and a selector output circuit. The selector output circuit is configured to provide selector output signals that control selection among the DC power source and the plurality of batteries. The selector output circuit providing said selector output signals to select the DC source and deselect the plurality of batteries if the first output signal is representative of the voltage level of said DC power source being greater than the first threshold level.

Claims

1 . A selector circuit to select among a DC power source and a plurality of batteries for an electronic device, said selector circuit comprising: a first comparator configured to compare a first input signal representative of a voltage level of said DC power source with a first threshold level and provide a first output signal representative of a difference between said first input signal and said first threshold level; and a selector output circuit configured to provide selector output signals that control selection among said DC power source and said plurality of batteries, said selector output circuit providing said selector output signals to select said DC source and deselect said plurality of batteries if said first output signal is representative of said voltage level of said DC power source being greater than said first threshold level. 2 . The selector circuit of claim 1 , further configured to receive a power management unit (PMU) output signal from a PMU configured to run a power management routine, and wherein said PMU output signal represents a desired selection of at least one of said plurality of batteries, and wherein said selector output circuit provides said selector output signals to select said DC power source and deselect said plurality of batteries if said first output signal is representative of said voltage level of said DC power source being greater than said first threshold level, thereby overriding said PMU output signal. 3 . The selector circuit of claim 1 , further comprising: a second comparator configured to compare said first input signal with a second threshold level and provide a second output signal representative of a difference between said first input signal and said second threshold level, said second threshold level greater than said first threshold level; and a charge enable circuit configured to accept at least said second output signal and provide a charge enable signal in response to at least said second output signal, said charge enable signal enabling charging of at least one of said plurality of batteries if, at least, said second output signal is representative of said voltage level of said DC power source being greater than said second threshold level. 4 . The selector circuit of claim 3 , further comprising: a third comparator configured to compare a third signal representative of a voltage level of said electronic device and provide a third output signal representative of a difference between said third signal and said third threshold level, said third threshold level less than said second threshold level; and a power crises circuit configured to accept at least said first output signal and said third output signal and provide a diode mode signal in response to detection of a power crises condition. 5 . The selector circuit of claim 4 , wherein said selector output circuit is responsive to said diode mode signal to select each of said DC power source and said plurality of batteries such that said DC power source and each of said plurality of batteries is coupled in series to an associated diode thereby permitting only one of said plurality of batteries or said DC power source with a higher voltage level to supply power to said electronic device. 6 . A selector circuit to select among a DC power source and a plurality of batteries for an electronic device, said selector circuit comprising: a power crises circuit configured to accept an input signal in response to a power management unit (PMU) output signal from a PMU configured to run a power management routine, said power crises circuit configured to provide a diode mode signal upon detection of a power crises condition. 7 . The selector circuit of claim 6 , wherein said power crises circuit deactivates said diode mode signal upon detection of said power crises condition being remedied. 8 . The selector circuit of claim 7 , wherein a system check signal representative of a voltage level of said electronic device less than a minimum voltage threshold level represents one said power crisis condition, and wherein said system check signal representative of said voltage level of said electronic device greater than said minimum voltage threshold level represents said one power crises condition being remedied. 9 . The selector circuit of claim 6 , wherein switches are responsive to said diode mode signal to couple each of said plurality of batteries and said DC power source to an associated diode thereby permitting only one of said plurality of batteries or said DC power source with a higher voltage level to supply power to said electronic device. 10 . A method of selecting among a DC power source and a plurality of batteries for an electronic device, said method comprising: comparing a first input signal representative of a voltage level of said DC power source with a first threshold level; providing a first output signal representative of a difference between said first input signal and said first threshold level; and selecting said DC power source to provide power to said electronic device and deselecting said plurality of batteries if said first output signal is representative of said voltage level of said DC power source being greater than said first threshold level. 11 . The method of claim 10 , further comprising: receiving a power management unit (PMU) output signal from a PMU configured to run a power management routine, wherein said PMU output signal represents a desired selection of at least one of said plurality of batteries to provide power to said electronic device; and overriding said PMU output signal by selecting said DC power source to provide power to said electronic device and deselecting said plurality of batteries if said first output signal is representative of said voltage level of said DC power source being greater than said first threshold level. 12 . The method of claim 11 , further comprising: comparing said first input signal with a second threshold level; providing a second output signal representative of a difference between said first input signal and said second threshold level, said second threshold level greater than said first threshold level; and providing a charge enable signal in response to at least said second output signal to enable charging of at least one of said plurality of batteries if said second output signal is representative of said voltage level of said DC power source being greater than said second threshold level. 13 . The method of claim 10 , further comprising: detecting a power crises condition; and coupling each of said DC power source and said plurality of batteries to an associated diode in response to said detecting of said power crises condition to permit only one of said plurality of batteries or said DC power source with a higher voltage level to supply power to said electronic device during said power crises condition. 14 . The method of claim 13 , wherein a system check signal representative of a voltage level of said electronic device less than a minimum voltage threshold level represents one said power crisis condition. 15 . A selector circuit to select among a DC power source and a plurality of batteries for an electronic device, said selector circuit comprising: a first comparator configured to compare a first input signal representative of a voltage level of said DC power source with a first threshold level and provide a first output signal representative of a difference between said first input signal and said first threshold level; a second comparator configured to compare said first input signal with a second threshold level and provide a second output signal representative of a difference between said first input signal and said second threshold level, said second threshold level greater than said first threshold level; a third comparator configured to compare a third signal representative of a voltage level of said electronic device with a third threshold level and provide a third output signal representative of a difference between said third signal and said third threshold level; a fourth comparator configured to compare a voltage level of a first battery with a voltage level of a second battery and to provide a fourth output signal representative of a difference between said voltage level of said first battery and said voltage level of said second battery; a parallel battery use enable circuit configured to receive at least said fourth signal and provide a parallel battery use enable signal in response to at least said fourth signal; a charge enable circuit configured to accept at least said second output signal and provide a charge enable signal in response to at least said second output signal, said charge enable signal enabling charging of at least one of said plurality of batteries if, at least, said second output signal is representative of said voltage level of said DC power source being greater than said second threshold level; a power crisis circuit configured to accept at least said third output signal, said parallel battery use enable signal, and said first output signal and configured to provide a diode mode signal upon detection of a power crises condition; and a selector output circuit configured to provide selector output signals that control selection among said DC power source and said plurality of batteries, said selector output circuit providing said selector output signals in response to a power management unit (PMU) output signal from a PMU, said charge enable signal, said diode mode signal, said parallel battery use enable signal, and said first output signal. 16 . The selector circuit of claim 15 , wherein said selector output circuit is configured to provide said selector output signals to select said DC source and deselect said plurality of batteries if said first output signal is representative of said voltage level of said DC power source being greater than said first threshold level. 17 . The selector circuit of claim 15 , wherein said power crises deactivates said diode mode signal upon detection of said power crises condition being remedied. 18 . The selector circuit of claim 17 , wherein one said power crises condition occurs if said third output signal is representative of said voltage level of said electronic device less than said third threshold level, said one power crises being remedied if said third output signal is representative of said voltage level of said electronic device greater than said third threshold level.
CROSS REFERENCE TO RELATED APPLICATIONS [0001] This application is a Continuation Application of application Ser. No. 10/364,228 filed Feb. 11, 2003, now U.S. Pat. No. ______, the teachings of which are incorporated herein by reference. FIELD OF THE INVENTION [0002] The present invention relates to selector circuits and in particular to selector circuits for use with multiple battery systems. BACKGROUND OF THE INVENTION [0003] Selector circuits are typically utilized in a power supply block for various electronic devices. Such selector circuits are generally designed to select between a DC power source, e.g., an AC/DC adapter, and a rechargeable battery. Such selector circuits are not designed to make selections of two or more batteries for operation in parallel. In addition, in various electronic devices like a laptop computer, such selector circuits are typically controlled via control signals communicated via a System Management Bus (SMBus) according to a specified protocol. In addition, such selector circuits typically cannot independently ascertain, correct, and notify other components in the power supply block of a power crises condition. In addition, such selector circuits are not configured to accept control signals from an associated host power management unit. [0004] Accordingly, there is a need in the art for a selector circuit for overcoming the above deficiencies in the prior art. BRIEF SUMMARY OF THE INVENTION [0005] According to one aspect of the invention, there is provided a selector circuit to select among a DC power source and a plurality of batteries for an electronic device. The selector circuit includes a first comparator configured to compare a first input signal representative of a voltage level of the DC power source with a first threshold level and provide a first output signal representative of a difference between the first input signal and the first threshold level. The selector circuit also includes a selector output circuit configured to provide selector output signals that control selection among the DC power source and the plurality of batteries. The selector output circuit providing the selector output signals to select the DC source and deselect the plurality of batteries if the first output signal is representative of the voltage level of the DC power source being greater than the first threshold level. [0006] According to another aspect of the invention, there is provided a selector circuit to select among a DC power source and a plurality of batteries for an electronic device. The selector circuit includes a power crises circuit configured to accept an input signal in response to a power management unit (PMU) output signal from a PMU configured to run a power management routine. The power crises circuit may further be configured to provide a diode mode signal upon detection of a power crises condition. [0007] According to yet another aspect of the invention there is provided a method of selecting among a DC power source and a plurality of batteries for an electronic device. The method may include comparing a first input signal representative of a voltage level of the DC power source with a first threshold level; providing a first output signal representative of a difference between the first input signal and the first threshold level; and selecting the DC power source to provide power to the electronic device and deselecting the plurality of batteries if the first output signal is representative of the voltage level of the DC power source being greater than the first threshold level. [0008] According to yet another aspect of the invention there is provided a selector circuit to select among a DC power source and a plurality of batteries for an electronic device. The selector circuit may include a first comparator configured to compare a first input signal representative of a voltage level of the DC power source with a first threshold level and provide a first output signal representative of a difference between the first input signal and the first threshold level. The selector circuit may also include a second comparator configured to compare the first input signal with a second threshold level and provide a second output signal representative of a difference between the first input signal and the second threshold level, the second threshold level greater than the first threshold level. The selector circuit may also include a third comparator configured to compare a third signal representative of a voltage level of the electronic device with a third threshold level and provide a third output signal representative of a difference between the third signal and the third threshold level. The selector circuit may also include a fourth comparator configured to compare a voltage level of a first battery with a voltage level of a second battery and to provide a fourth output signal representative of a difference between the voltage level of the first battery and the voltage level of the second battery. The selector circuit may also include a parallel battery use enable circuit configured to receive at least the fourth signal and provide a parallel battery use enable signal in response to at least the fourth signal. The selector circuit may also include a charge enable circuit configured to accept at least the second output signal and provide a charge enable signal in response to at least the second output signal, the charge enable signal enabling charging of at least one of the plurality of batteries if, at least, the second output signal is representative of the voltage level of the DC power source being greater than the second threshold level. The selector circuit may also include a power crisis circuit configured to accept at least the third output signal, the parallel battery use enable signal, and the first output signal and configured to provide a diode mode signal upon detection of a power crises condition. Finally, the selector circuit may also include a selector output circuit configured to provide selector output signals that control selection among the DC power source and the plurality of batteries, the selector output circuit providing the selector output signals in response to a power management unit (PMU) output signal from a PMU, the charge enable signal, the diode mode signal, the parallel battery use enable signal, and the first output signal. BRIEF DESCRIPTION OF THE DRAWINGS [0009] Advantages of the present invention will be apparent from the following detailed description of exemplary embodiments thereof, which description should be considered in conjunction with the accompanying drawings, in which: [0010] FIG. 1 is a simplified high level block diagram of an electronic device with a power supply block having a selector circuit consistent with the invention that makes a selection in response to an output signal from a power management unit (PMU); [0011] FIG. 2 is a more detailed block diagram of the power supply block portion of FIG. 1 having a selector circuit consistent with the invention for making a selection among a DC power source and a plurality of batteries; [0012] FIG. 3 is a block diagram of one exemplary embodiment of a selector circuit consistent with the invention having a controller configured to provide signals to select among a DC power source and a plurality of batteries via an associated switch driver network and associated switches; [0013] FIG. 4 is a more detailed block diagram of the selector circuit of FIG. 3 illustrating various components of the controller portion in more detail; [0014] FIG. 5 is an exemplary table illustrating how the selector circuit drives various switches to ON and OFF states dependent on various input signals when the electronic device is powered by a DC power source; and [0015] FIG. 6 is an exemplary table illustrating how the selector circuit drives various switches to ON and OFF states depending on various input signals when the device is powered by one or more batteries. DETAILED DESCRIPTION [0016] Turning to FIG. 1 , a simplified block diagram of an electronic device 100 capable of being powered from any number of power sources 104 , 105 is illustrated. Such power sources may include a plurality of batteries 105 and a DC power source 104 . The batteries 105 may further be rechargeable batteries of various types such as lithium-ion, nickel-cadmium, nickel-metal hydride batteries, or the like. The electronic device 100 may be any variety of devices known in the art such as portable electronic devices (laptop computers, cell phones, pagers, personal digital assistants, and the like), an electric powered vehicle, power tools, etc. that may be powered from either power source 104 , 105 in various instances. [0017] If the electronic device 100 is a laptop computer it would include a variety of components known to those skilled in the art which are not illustrated in FIG. 1 . For example, the laptop may include an input device for inputting data to the laptop, a central processing unit (CPU) or processor, for example a Pentium processor available from Intel Corporation, for executing instructions and controlling operation of the laptop, and an output device, e.g., a LCD or speakers, for outputting data from the laptop. [0018] To recharge batteries 105 and/or supply power to the device 100 , a DC power source 104 may be coupled to the device 100 . The DC power source 104 may be an AC/DC adapter which is configured to receive conventional 120 volts AC from a wall outlet and convert it to a DC output voltage. The DC power source 104 may also be a DC/DC adapter such as a “cigarette lighter” type adapter configured to plug into that type of socket. Such a DC power source 104 is illustrated in FIG. 1 as separate from the device 100 , but it may be built into some devices. [0019] The device 100 has a power supply block 106 including at least a selector circuit 114 consistent with the present invention. The power supply block 106 may also include a PMU 120 as illustrated in FIG. 1 . Alternatively, the PMU 120 may also be embedded in a more complex processor of the electronic device 100 . The PMU 120 is configured to run various power management routines as is known in the art. In general, the power supply block 106 includes various components to monitor, control, and direct power from each power source to each other and to the system 110 of the device 100 under various conditions. Advantageously, the selector circuit 114 consistent with the invention is configured to be responsive to at least one output signal from the PMU 120 as further detailed herein. [0020] Turning to FIG. 2 , a more detailed block diagram of an exemplary power supply block 206 for a multiple battery system is illustrated. The power sources may include the DC source 204 , e.g., an AC/DC converter, and any number of a plurality of batteries 205 - 1 , 205 - 2 , 205 - k . Such batteries may also be rechargeable batteries. At any point in time, each of these power sources 204 , 205 - 1 , 205 - 2 , 205 - k may or may not be present in the system. [0021] In general, the power supply block 206 may include a PMU 220 , a charger circuit 222 , a power conversion element 226 , a battery switch network 217 , a switch 230 , a power supply path 209 from the DC power source 204 to the system 210 , a power supply path 240 from the batteries 205 - 1 , 205 - 2 , 205 - k to the system, a power supply path 207 from the DC power source 204 to the rechargeable batteries 205 - 1 , 205 - 2 , 205 - k for recharging purposes, a selector circuit 214 consistent with the invention, and various data or communication paths. The battery switch network 217 may further contain a charge switch CSW 1 , CSW 2 , CSWk and a discharge switch DSW 1 , DSW 2 , DSWk for each associated battery 205 - 1 , 205 - 2 , 205 - k. [0022] The data or communication paths between the various components of the power supply block 206 may be uni-directional or bi-directional, and may conduct either analog or digital signals. The data paths may transport either command or control signals or data. The number of such data paths is strongly dependent on the particular features of the batteries 205 - 1 , 205 - 2 , 205 - k , the charger circuit 222 , the PMU 220 , and those of the supply block 206 as a whole. For example, if an associated device 100 is a laptop computer, a smart charger circuit and smart batteries can communicate via a System Management Bus (SMBus) according to a specified protocol. [0023] In general, the selector circuit 214 is responsive to various input signals from a variety of components, including the PMU 220 , in the supply block 206 to provide switch control signals over path 250 to the battery switch network 217 and the switch 230 to control and direct power from each power source to each other and to the system 210 under various conditions. [0024] For example, a particular set of input signals to the selector circuit 214 may indicate the presence of a DC power source 204 with an acceptable voltage level. In response to such an input signal, the selector circuit 214 could provide a control signal to switch 230 to close (turn ON) switch 230 ON and to open (turn OFF) discharge switches DSW 1 , DSW 2 , DSWk in the battery switch network 217 . As such, power from the DC power source 204 would be provided to the system 210 . Alternatively, if input signals to the selector circuit indicated the absence of a DC power source 204 or a DC power source with an unacceptable voltage level, the selector circuit 214 would provide an appropriate control signal to turn switch 230 OFF, and to turn one of the discharging switches DSW 1 , DSW 2 , DSWk of the battery switch network ON. As such, one or more of the associated batteries 205 - 1 , 205 - 2 , 205 - k would provide power to the system 210 as long as other safety conditions were also met as will be further detailed herein. [0025] The charge switches CSW 1 , CSW 2 , CSWk for each associated rechargeable battery 205 - 1 , 205 - 2 , 205 - k provide a conductive path from the power supply line 207 to each associated battery when the charge switches are ON for charging purposes. The discharge switches DSW 1 , DSW 2 , DSWk provide a conductive path from each associated battery 205 - 1 , 205 - 2 , 205 - k to the system 210 to power the system 210 from one or more batteries based on which discharge switches DSW 1 , DSW 2 , DSWk are ON. [0026] Advantageously, at least one input signal to the selector circuit 214 is representative of an output signal from the PMU 220 . Such communication between the PMU 220 and the selector circuit 214 may take place via data path 211 . As understood by those skilled in the art, the PMU 220 is capable of running a host device's power management routine. The PMU 220 may provide a host set of signals to the selector circuit 214 including a signal indicating which battery 205 - 1 , 205 - 2 , 205 - k , or combination of batteries in parallel, should be selected for charging or discharging. As further detailed herein, the selector circuit 214 is responsive to the PMU 220 . However, the selector circuit 220 is further configured to have its own internal checks and can override a desired use signal from the PMU under various conditions as further detailed herein to provide for added safety and battery power savings. The charger circuit 222 is configured to communicate via data path 252 to the selector 214 and via data path 254 to a power conversion unit 226 , e.g., a charger controlled DC-DC converter. The charger circuit 222 may control the providing of charging current to the batteries 205 - 1 , 205 - 2 , 205 - k via the power supply path 207 and the power conversion unit 226 . [0027] Turning to FIG. 3 , an exemplary power supply block 306 for operation in conjunction with three power sources is illustrated. The power sources include a DC power source (not illustrated) coupled to the power supply block 306 via power supply path 309 , a first rechargeable Battery A, and a second rechargeable Battery B. The power supply block 306 includes a selector circuit 314 consistent with the invention and other components such as an associated PMU 320 , a charger circuit 322 , and a power conversion unit 326 , e.g., a DC-DC converter. As earlier detailed, although the PMU 320 is illustrated as part of the supply block 306 , the PMU 320 may be external to the supply block, embedded in a separate component outside of the power supply block, or the PMU's functionality may be provided by a separate component, e.g., a CPU, of the electronic device. [0028] For clarity and simplicity, the DC source and various data connections (e.g., from the charger circuit 306 to the power conversion unit 326 and to the PMU 320 , as well as those between the batteries and the PMU 320 ) that were previously illustrated in FIG. 2 are not illustrated in FIG. 3 . Advantageously, the selector circuit 314 and the charging circuit 322 may be integrated onto one integrated circuit 390 for convenience of operation and installation. [0029] The selector circuit 314 includes a controller 315 and a switch driver network 317 as further detailed herein. The selector circuit 314 has a variety of input terminals 380 to accept a variety of input data and control signals. Such input terminals 380 are also coupled to the controller 315 . The selector circuit 314 also has a variety of output terminals 382 to provide control signals to associated switches SW 1 , SW 2 , SW 3 , SW 4 , SW 5 , and SW 6 and to provide data to associated components of the power supply block 306 . The input terminals 380 include terminals 380 - 1 to 380 - 9 to accept control and data signals labeled PSM, USE_A, USE_B, ICHG, VAD, VSYS, BATT_A, BATT-B, and AUXIN respectively. The output terminals 382 include terminals 382 - 1 to 382 - 10 to provide control and data signals labeled PWR_AC, PWR_BATT, CHGA, DCHA, ACAV, ALERT, CHGEN, CHGB, DCHB, and AUXOUT respectively. Each input terminal 380 and output terminal 382 and their associated control and data signals are generically described below. [0030] The first input terminal 380 - 1 may accept a power save mode (PSM) digital input control signal from the PMU 320 representative of whether a power save mode is desired by the PMU 320 . The second and third input terminals 380 - 2 and 380 - 3 may accept USE_A and USE_B control signals from the PMU 320 indicating the PMU's desired battery or combination of batteries to utilize in a given charging or discharging mode. For instance, in the embodiment of FIG. 3 having two batteries A and B the USE_A and USE_B control signals may be digital signals such that if USE_A is low and USE_B is high, use of Battery A is desired. If USE_A is high and USE_B is low, use of Battery B is desired. If USE_A is low and USE_B is low, use of Battery A and Battery B in parallel is desired. Finally, if USE_A is high and USE-B is high, use of neither Battery A nor Battery B is desired. These representative high and low signals for USE_A and USE_B is for illustrative purposes only as those skilled in the art will recognize that other combinations may also be chosen. [0031] The fourth input terminal 380 - 4 may accept a charging current (ICHG) analog signal from the charger circuit 322 representative of the charging current provided to the batteries. The fifth input terminal 380 - 5 may accept an analog signal from the DC voltage source 204 , e.g., the AC/DC adapter, (VAD) representative of the voltage level provided by the DC power source 204 at that particular time. The sixth input terminal 380 - 6 may accept an analog signal representative of the system supply voltage level (VSYS). The seventh 380 - 7 and eighth input terminals 380 - 8 may accept analog signals from Battery A (BATT_A) and Battery B (BATT_B) representative of the voltage level of each respective battery. Such BATT_A and BATT_B analog signals may be obtained by measuring the voltage at the positive pole of each respective battery. Finally, the ninth input terminal 380 - 9 represents a generic input terminal capable of receiving any other input control and data signals (AUXIN) considered not critical to the description of the present invention herein. [0032] The first output terminal 382 - 1 may provide a switch control signal (PW_RAC) to switch SW 1 . The second output terminal 382 - 2 may provide a switch control signal (PWR_BATT) to switch SW 2 . The third output terminal 382 - 3 may provide a switch control signal (CHGA) to the charging switch SW 3 for Battery A. The fourth output terminal 382 - 4 may provide a switch control signal (DCHA) to the discharging switch SW 4 for Battery A. The fifth output terminal 382 - 5 may provide a digital DC source enable signal (ACAV) indicating the presence or absence of the DC Power source 204 having an output voltage greater than an acceptable threshold limit. [0033] The sixth output terminal 382 - 6 may provide a digital data signal (ALERT) to notify other components, including at least the PMU 320 , of a power crisis condition which will be later detailed herein. The seventh output terminal 382 - 7 may provide a digital data signal (CHGEN) to the charger which indicates if a charge enable condition has been reached. The eighth output terminal 382 - 8 may provide a switch control signal (CHGB) to the charging switch SW 5 for Battery B. The ninth output terminal 382 - 9 may provide a switch control signal (DCHB) to the discharging switch SW 6 for Battery B. Finally, the tenth output terminal 380 - 10 represents a generic output terminal capable of providing any other output control and data signals (AUXOUT) considered not critical to the description of the present invention herein. [0034] The controller 315 accepts the above input data and control signals from the input terminals 380 of the selector circuit 314 and makes decisions about which power source or combination of sources (e.g., DC power source, Battery A, or Battery B) to select or deselect by controlling one or more combinations of switches SW 1 to SW 6 . The controller 315 may also provides data and other control signals directly to the other output terminals, e.g, output terminals 382 - 5 , 382 - 6 , 382 - 7 , and 382 - 10 , for communication to other components of the power supply block 306 . [0035] The switch driver network 317 may include a plurality of switch drivers SD 1 , SD 2 , SD 3 , SD 4 , SD 5 , and SD 6 . Each of the switch drivers SD 1 , SD 2 , SD 3 , SD 4 , SD 5 , and SD 6 may be further coupled to an associated switch SW 1 , SW 2 , SW 3 , SW 4 , SW 5 , and SW 6 in order to drive each switch to ON and OFF positions as instructed by the controller 315 of the selector circuit 314 . [0036] Turning to FIG. 4 , a more detailed block diagram of the selector circuit 314 , and in particular the controller 315 of the selector circuit 314 of FIG. 3 is illustrated. In general, the controller 315 may include a selector output circuit 470 , a charge enable circuit 472 , a parallel battery use enable circuit 476 , an input validation circuit 478 , a power crises circuit 474 , and a plurality of comparators CMP 1 , CMP 2 , CMP 3 , and CMP 4 . [0037] In general, the selector output circuit 470 may receive a variety of internal control signals such as a charge enable (CHGEN) signal from the charge enable circuit 472 , a diode mode (DM) signal from the power crises circuit 474 , a valid input signal (VINP 1 ) from the input validation circuit 478 , a parallel battery use enable (PBUE) signal from the parallel battery use enable circuit 476 , and a DC source enable signal (ACAV) from comparator CMP 1 . The selector output circuit 470 may also receive an analog signal ICHG from the charger circuit 322 representative of the charging current. As further detailed herein, the selector output circuit 470 directs the switch driver network 317 to turn associated switches SW 1 , SW 2 , SW 3 , SW 4 , SW 5 , and SW 6 ON and OFF depending on the state of various input signals. [0038] The controller 315 may include a first comparator CMP 1 configured to compare an analog signal representative of the voltage level of the DC source with a first threshold level VT 1 . The first threshold level VT 1 is set higher than minimum supply voltage VT 3 acceptable to the system. If the DC power source is present and has a supply voltage greater than the first threshold level VT 1 , the first comparator CMP 1 provides a high ACAV control signal to the selector output circuit 470 . Otherwise the first comparator provides a low ACAV signal The ACAV signal may also be provided to the power crisis circuit 474 . [0039] If the selector output circuit 470 receives a high ACAV signal from the first comparator CMP 1 , it will provide appropriate switch control signals to turn switch SW 1 ON and turn switches SW 2 to SW 6 OFF (assuming the DC power source supply voltage is not greater than a second threshold level VT 2 as further detailed below) such that power to the system 210 will be provided by the DC power source and no batteries will be recharged. The selector circuit 314 will utilize the DC power source in this instance irrespective of the USE_A and USE_B control signals from the PMU. As such, the selector circuit 314 can override a control signal from the PMU to use Battery A or Battery B and instead require power to the system 210 to be supplied by the DC power source whenever it is present and has a suitable voltage level greater than VT 1 . Advantageously, this feature prolongs battery life by ensuring use of the DC power source in appropriate circumstances. [0040] To enable powering of the system 210 from the DC source and charging of one or more batteries, the charge enable (CHGEN) signal must be active. An active CHGEN signal in the present embodiment is a high CHGEN signal. The charge enable circuit 472 will provide a high CHGEN signal if it receives an appropriate CHGP signal from the second comparator CMP 2 , and an appropriate validation signal VINP 1 from the input validation circuit 478 . The second comparator CMP 2 provides the appropriate CHGP signal if the supply voltage from the DC power source is greater than a second threshold level VT 2 , where VT 2 >VT 1 , and VT 1 >VT 3 . The input validation circuit 478 provides the validation signal VINP 1 . An appropriate validation signal VINP 1 will be provided if the USE_A and USE_B control signals from the PMU assert the use of at least one of the Batteries A or B. An appropriate validation signal VINP 1 will not be sent if the USE_A and USE_B control signals fail to assert the use of any of the Batteries A or B, e.g., if both USE_A and USE_B are high. The charge enable circuit 472 may also need other supplementary validation input signals (AUXIN) from the generic input terminal 380 - 9 in order to generate an active CHGEN signal. [0041] During charging, the charging circuit 322 provides the ICHG signal to the selector circuit 314 that is representative of a charging current level. The selector circuit 314 accepts the ICHG signal at input terminal 380 - 4 and provides such signal to the selector output circuit 470 . The selector output circuit 470 compares such ICHG signal with a charging threshold level signal ICHT. Based on this comparison, the selector output circuit 470 decides if the charging current level is high or low and turns various switches ON or OFF based on this and other input data as further detailed herein. A low charging current is represented by a low control signal and a high charging current is represented by a high control signal in the present embodiment as detailed in the table of FIG. 5 . [0042] The parallel battery use enable circuit 476 provides a parallel battery use enable (PBUE) signal to the selector output circuit 470 . The selector output circuit 470 responds to a high PBUE signal by allowing parallel battery use, and responds to a low PBUE signal by not allowing parallel battery use despite a request from the PMU 320 via USE_A and USE_B signals indicating a desire for parallel battery use, e.g., USE_A and USE_B are low. As such, the selector circuit 314 provides additional precautions and protections against using Batteries A and B in parallel unless appropriate conditions are present. [0043] For instance, the concern with using any two or more batteries, e.g., Battery A and Battery B, in parallel is that there is a relatively large difference in potential that creates an undesirable high current conditions when such batteries are connected in parallel. As such, a fourth comparator CMP 4 of the controller 315 is configured to compare signals BATT_A and BATT_B. Such BATT_A and BATT_B signals may be analog signals taken from the positive terminal of Battery A and Battery B. If the difference between the two BATT_A and BATT_B signals is within a predefined limit, the comparator CMP 4 will provide an active BATTCOMP signal to the parallel battery use enable circuit 476 . In addition to receiving an active BATTCOMP signal from the fourth comparator CMP 4 , the parallel battery use enable circuit 476 should also receive an appropriate input validation signal VINP 2 from the input validation circuit 478 to issue an active PBUE signal. An appropriate validation signal VINP 2 will be provided if the USE_A and USE_B control signals assert the use of at the Batteries A and B in parallel, e.g., USE_A and USE_B are low. [0044] If the USE_A and USE_B control signals from the PMU indicate parallel battery use is desired by the PMU, but the PBUE signal is not active because the voltage difference between Battery A and Battery B is not within the predetermined limit, the selector output circuit 474 will direct charging to the battery having the lower voltage level compared to the other. Under similar conditions, when no valid DC source is present, the selector output circuit will direct the battery with the higher voltage level compared to the other to provide discharging power to the system. [0045] Advantageously, the selector circuit 314 may also include a power crises circuit 474 designed to independently monitor and identify power crises conditions, and provide an appropriate diode mode (DM) control signal to the selector output circuit 470 in case of a detected power crisis condition. The selector output circuit 470 is responsive to the appropriate DM control signal from the power crises circuit 474 to cause switch drivers from the switch driver network 317 to maintain switches SW 2 , SW 4 , and SW 6 in an ON state, while maintaining switches SW 1 , SW 3 , and SW 5 in an OFF state. As such, the power source with the highest voltage (Battery A, Battery B, or the DC power source) will supply the system though one of the diodes D 1 , D 3 , or D 5 respectively in this diode mode. In addition, the selector circuit 314 will also provide an ALERT condition signal at output terminal 382 - 6 indicating a power crises condition. The ALERT signal could be provided to a number of components, including at least the PMU 320 . [0046] A power crises condition can include an invalid output or an invalid input. An invalid output can occur whenever the power source or sources that are supplying the system can not maintain the system voltage level at the minimum system threshold voltage level VT 3 . The system voltage level is compared with the minimum threshold voltage level VT 3 by comparator CMP 3 and a system check control signal VSYSOK is sent to the power crises circuit 474 based on this comparison. A low system voltage power crisis condition may occur if one or more of the power sources are willingly or accidentally disconnected. [0047] An invalid input can also cause a power crises problem. An invalid input could be the PMU asserting through USE_A and USE_B signals a desired condition that would cause the system to lose power. For instance, the USE_A and USE_B signals may assert neither battery to be used (low VINP 1 signal), e.g., USE_A and USE_B high, yet the DC power source is not available (low ACAV signal) or cannot keep the system at the minimum VT 3 voltage level (low VSYSOK signal). Another invalid input situation may occur if the USE_A and USE_B signals from the PMU, although logically correct, would cause the system to lose power. For instance, the USE_A and USE_B signals may point to supply from one battery that is not present or accidentally removed. Use of such a battery would then cause the voltage level on the system to drop below the VT 3 threshold and the VSYSOK signal indicative of this condition would be provided to the power crises circuit 374 . [0048] Due to power dissipation on diodes D 1 , D 3 , or D 5 it is not suitable to maintain the DM supply mode for longer periods of time. Advantageously, the power crisis circuit 474 continuously monitors its input signals to deactivate is DM signal as soon as the power crises condition is remedied. Therefore, as soon as the power crises condition is remedied (e.g., a missing power source is coupled to the system) the internal DM signal from the power crisis circuit becomes inactive and a normal power supply mode is resumed. [0049] Turning to FIG. 5 , in conjunction with FIGS. 2 though 4 , a table 500 illustrates respective switch states of switches SW 1 to SW 6 depending on various input signals to the selector circuit 314 and the selector output circuit 470 . The table 500 illustrates various switch states when power to the system 210 is provided by the DC power source 204 and not the batteries 305 . As such, the ACAV signal is high and the selector output circuit 470 sends appropriate switch control signals to the switch driver network 317 so SW 1 is ON and SW 2 is OFF as indicated in every column of table 500 . [0050] The CHGEN signal is “high” in every column of the table 500 except for the last column 522 . As such, not only is the DC source present but the other conditions (the voltage from the DC source>VT 2 , and a proper input validation signal VINP 1 is present) are satisfied to provide the high CHGEN signal. As such, charging is permitted in columns 502 to 520 of table 500 . [0051] In columns 502 and 504 , the USE_A and USE_B signals are low and high respectively indicating the PMU's desire to use Battery A. As such, the switches SW 5 and SW 6 to Battery B are OFF in both instances. In column 502 , the charging current signal is “low” indicating the charging current from the power conversion unit 226 to the batteries 305 is lower than a threshold charging current level ICHT. As such, the selector output circuit 470 is responsive to the charging current signal by sending appropriate control signals to the switch drive network 317 to turn SW 3 ON and SW 4 OFF. As such, charging current to Battery A flows through closed SW 3 and the diode D 4 in parallel with open SW 4 . Since the charging current is low, its flow through diode D 4 will produce negligible power dissipation. [0052] In contrast, the charging current in column 504 is high as indicated by a “high” charging current signal. As such, switches SW 3 and SW 4 are both ON. Therefore, no excess power is dissipated in diode D 4 in this instance since the current flows through the closed switch SW 4 . Normally, at similar current levels switches SW 1 to SW 6 , when in an ON state, dissipate less power than their corresponding parallel diodes D 1 to D 6 . This difference is particularly important at high current levels. [0053] Turning to columns 506 and 508 , the USE_A and USE_B signals are high and low respectively indicating the PMU's desire to use Battery B. As such, the switches SW 3 and SW 4 to Battery A are OFF. Column 506 , somewhat similarly to column 502 , has a low charging current as represented by the low charging current signal. As such, switch SW 5 is ON and SW 6 is OFF. Charging current to Battery B therefore flows through closed switch SW 5 and the diode D 6 in parallel with open switch SW 6 . In contrast, the charging current in column 508 is high as represented by the high charging current signal. As such, switches SW 5 and SW 6 are ON such that no power is dissipated in diode D 6 in this instance. [0054] Turning to columns 510 to 520 , the USE_A and USE_B signal are low and low respectively indicating the PMU's desire to use Battery A and Battery B in parallel. If the parallel battery use enable (PBUE) signal is high as indicated in columns 510 and 512 , parallel charging of the Batteries A and B will be permitted. Switches SW 3 to SW 6 will all be ON if the charging current is high (charging current signal is high) as illustrated in column 512 . Switches SW 3 and SW 5 will be ON and switches SW 4 and SW 6 will be OFF if the charging current is low (charging current signal is low) as illustrated in column 510 . [0055] If the USE_A and USE_B signals indicate the PMU's desire to use Battery A and Battery B in parallel, but the PBUE signal is low, the selector circuit 314 will not permit parallel battery operation thereby overriding the PMU's desired parallel operation. With all else being acceptable, the selector circuit 314 will permit charging of the battery with the lower voltage level. For instance, columns 514 , 516 indicate Battery A has the lower voltage level. As such, switches SW 5 and SW 6 to Battery B are OFF. Switch SW 3 to Battery A is ON in column 514 and switches SW 3 and SW 4 are ON in column 516 . Similarly, if Battery B has the lower voltage level, switches SW 3 and SW 4 to Battery A will remain OFF as illustrated in columns 518 and 520 . Switches SW 5 and SW 6 to Battery B will turn ON depending on the charging current level. [0056] In contrast to power being supplied by the DC power source, power may be supplied by one or more of the batteries in various battery power system supply modes. In a battery supply mode, the selector circuit 314 instructs switch SW 1 to be OFF and SW 2 to be ON. The selector circuit 314 instructs a battery supply mode to be instituted if the DC source is not present, or the DC is present but does not have a voltage level above the first threshold VT 1 as determined by comparator CMP 1 . As such, the ACAV signal from the first comparator CMP 1 to the selector output circuit 470 would be low indicating a battery supply mode. When the ACAV signal is low, the selector output circuit 470 will instruct SW 1 to switch OFF and SW 2 to switch ON. [0057] In the embodiment of FIG. 3 , there are essentially two normal battery system supply modes. In normal battery system supply mode 1 (nbssm 1 ), the USE_A and USE_B signals from the PMU point to use of only one Battery A or B, the targeted battery is present and can supply the system at least a voltage level to enable the system to have a voltage level greater the VT 3 threshold level. In normal battery system supply mode 2 (nbssm 2 ), the USE_A and USE_B signals point to the use of Batteries A and B in parallel, both batteries are present, both batteries can supply the system at least a voltage level to enable the system to have a voltage level greater the VT 3 threshold level, and both batteries have a respective voltage level within a predetermined voltage range of one another. [0058] FIG. 6 illustrates a table 600 showing various input signals for both battery system supply modes nbssm 1 and nbssm 2 and the corresponding state of switches SW 1 to SW 6 . As indicated earlier, since battery system supply mode is instituted, switch SW 1 is OFF and SW 2 is ON. Columns 602 and 604 of table 600 illustrate the first battery supply mode nbssm 1 where use of Battery A (column 602 ) or Battery B (column 604 ) is targeted or desired. The input validation signals VINP 1 and VINP 2 should be at acceptable levels (VINP 1 high and VINP 2 low) in these instances. Therefore, if power is to be supplied by Battery A (column 602 ), switches SW 3 and SW 4 will be ON and switches SW 5 and SW 6 will be OFF. In contrast, if power is to be supplied by Battery B (column 604 ), switches SW 5 and SW 6 will be ON and switches SW 3 and SW 4 will be OFF. [0059] In the second normal battery supply mode (nbssm 2 ), BATTCOMP signal from the comparator CMP 4 is high indicating the voltages of Batteries A and B are within an acceptable limit. The parallel battery use enable (PBUE) signal is also high indicating all other conditions (including high VINP 2 signal) for parallel battery use as monitored by the parallel battery use enable circuit 476 are satisfactory. As such switches SW 3 and SW 4 coupled to Battery A are ON and switches SW 5 and SW 6 coupled to Battery B are ON. [0060] Somewhat similar to the charging situation, if USE_A and USE_B signals indicate a desire to use both Batteries A and B in parallel, but the PBUE signal is not enabled (e.g., PBUE is low), the battery with the higher voltage level compared to the other will be selected to provide discharging power to the system. As such, the switch states will be like that in column 602 if Battery A has the higher voltage and like that in column 604 if Battery B has the higher voltage. [0061] The PMU 320 may also send a power save mode request to the selector circuit 314 if a DC power source is absent and low power consumption is desired to conserve battery life. If such a power save mode request is received by the selector circuit 314 , the controller 315 will direct switch SW 1 to turn OFF, switch SW 2 to turn OFF, switch SW 3 to turn OFF, switch SW 4 to turn ON, switch SW 5 to turn OFF, and switch SW 6 to turn ON. As such, Battery A or B with the higher voltage level will supply power via an associated diode D 3 or D 5 respectively. In addition, the selector circuits 314 own supply current will be highly reduced compared to normal operation contributing to overall device power savings in this power save mode. [0062] The embodiments that have been described herein, however, are but some of the several which utilize this invention and are set forth here by way of illustration but not of limitation. It is obvious that many other embodiments, which will be readily apparent to those skilled in the art, may be made without departing materially from the spirit and scope of the invention as defined in the appended claims.

Description

Topics

Download Full PDF Version (Non-Commercial Use)

Patent Citations (10)

    Publication numberPublication dateAssigneeTitle
    US-2002060498-A1May 23, 2002Yasuyuki Higashiura, Takumi Kishino, Toshiaki Ibi, Takashi Ono, Shoki KadowakiMethod and device for backup, and electronic device
    US-5760570-AJune 02, 1998Sony CorporationRechargeable battery apparatus
    US-5903764-AMay 11, 1999Micro International, Ltd.Smart battery selector offering power conversion internally within a portable device
    US-6087740-AJuly 11, 2000Siliconix IncorporatedPortable computer containing bidirectional current blocking MOSFET for battery disconnect switching
    US-6130813-AOctober 10, 2000Dell U.S.A., L.P.Protection circuit for electronic devices
    US-6177779-B1January 23, 2001Sony CorporationDevice and method for processing information, battery pack, and transmitting medium
    US-6225708-B1May 01, 2001International Business Machine CorporationUninterruptable power supply
    US-6268711-B1July 31, 2001Texas Instruments IncorporatedBattery manager
    US-6445164-B2September 03, 2002Fujitsu LimitedPower supply apparatus with chargeable battery and charge/discharge method
    US-6977448-B2December 20, 2005Hitachi, Ltd., Hitachi Maxwell, Ltd., Hitachi Computer Peripherals Co., Ltd.Backup power supply

NO-Patent Citations (0)

    Title

Cited By (13)

    Publication numberPublication dateAssigneeTitle
    US-2008157717-A1July 03, 2008Honeywell International, Inc.Circuit for monitoring batteries in a parallel configuration
    US-2009309419-A1December 17, 2009Noritoshi Yamasaki, Keiji SuzukiMethod for Prioritizing Load Consumption Within a Notebook Computer
    US-2009322287-A1December 31, 2009Norihito Ozeki, Noritoshi YamasakiCharging system
    US-2010100751-A1April 22, 2010Fu-Jyu Guo, Liang-Bin Chu, Yang Chou, Cheng-Wei Chang, Chi-Cheng ChangPower Management Method for a Portable Computer System and Related Power Supply Device and Portable Computer System
    US-2011278923-A1November 17, 2011Apple Inc.Multi-output power supply
    US-2012159206-A1June 21, 2012Sony CorporationInformation processor
    US-2015022924-A1January 22, 2015Infineon Technologies AgCircuitry and method for monitoring a power supply of an electronic device
    US-7573239-B2August 11, 2009Honeywell International Inc.Circuit for monitoring batteries in a parallel configuration while under load
    US-8248031-B2August 21, 2012Lenovo (Singapore) Pte. Ltd.Method for prioritizing load consumption within a notebook computer
    US-8248032-B2August 21, 2012Lenovo (Singapore) Pte. Ltd.Charging system for prioritizing load consumption in a notebook computer
    US-8519564-B2August 27, 2013Apple Inc.Multi-output power supply
    US-9647456-B2May 09, 2017Nxp B.V.Power management circuit and a method for operating a power management circuit
    US-9651630-B2May 16, 2017Infineon Technologies AgCircuitry and method for monitoring a power supply of an electronic device